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In protein crystallography, the use of low-resolution re¯ec-

tions is important in de®ning the molecular mask and

polypeptide backbone. However, in Laue data collection,

the loss of low-resolution re¯ection data (>2dmin) can be as

high as 40±50%, even after the deconvolution of multiples. To

estimate the re¯ection intensities that are not recorded in data

collection, a new method is presented based on maximizing

the entropy of the Patterson function subject to the constraints

imposed by the intensities of the observed re¯ections. The

method has been tested with Laue diffraction data from hen

egg-white lysozyme. All unobserved re¯ections within 5 AÊ

resolution were estimated, and their inclusion in the electron-

density-map calculation signi®cantly improved the connec-

tivity. This method could also be applied to improve the

completeness of monochromatic data.
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1. Introduction

Karle & Hauptman (1964) proposed that the Patterson func-

tion could be used for data extrapolation beyond the observed

range of the actual measured data. In their paper, they

presented an iterative procedure whereby a sharpened origin-

removed Patterson function could be utilized to extrapolate

data beyond the resolution limit of the observed data. In their

test case, the ®nal Patterson map showed remarkably

improved peak resolution, but the actual precision of the

extrapolated E values was not objectively quanti®ed. One

paper (Seeman et al., 1976) reported using this method to

obtain better E(hkl) estimates within the observed set of

measured data (without extrapolation). Langs (1998) revised

the method and used new calculation protocols to extend

observed data sets from 1 to 0.5 AÊ with reasonably good

precision.

In some time-resolved Laue diffraction experiments, 40±

50% of the re¯ection data, especially at low resolution, cannot

be measured owing to the Laue geometry and the limited

number of exposures. These re¯ections play an important role

when an electron-density map is calculated from the Fourier

transformation of the re¯ection data. In protein crystal-

lography, the absence of low-resolution re¯ections can result

in electron-density maps that have poor connectivity. To solve

this problem, we propose using the maximum-entropy method

to estimate the unmeasured re¯ections. This method is similar

in principle to the method we have used in a previous study

(Xie & Hao, 1997), in which the maximum-entropy method

was used to deconvolute Laue multiple-diffraction spots.

Maximum-entropy theory was ®rst presented by Shannon &

Weaver (1949) and its applications were thoroughly discussed

by Jaynes (1979). In crystallography, the theory has been used

to solve the phase problem (Collins, 1982; Wilkins, 1983;



Bricogne, 1984; Navaza, 1985; Prince, 1993; Gilmore, 1996). A

comprehensive review of its use in crystallography was

presented by Gilmore (1996). The power of the maximum-

entropy principle is that it yields a most probable solution

consistent with experimental observations (i.e. the constraints)

imposed on the solution. David (1987) has proposed a

maximum-entropy method for deconvoluting overlapped

intensities in powder diffraction. Bricogne (1991) has

discussed the problem of decomposing Laue data in a

maximum-entropy environment.

2. Mathematical analysis and implementation

Re¯ection intensities for the components of multiple Laue

diffraction spots can be deconvoluted by the maximum-

entropy method (Xie & Hao, 1997), direct methods (Hao et al.,

1993, 1995a) or the wavelength-normalization method

(Campbell & Hao, 1993; Ren & Moffat, 1995). These re¯ec-

tion intensities, together with those of the single re¯ections,

will later be used in the present study as constraints (called

`known re¯ections' hereafter). In the present context, the

function to be maximized is the `Patterson entropy'

S � ÿP
r

p�r� ln�p�r�=p0�r��; �1�

where the summation is taken over the entire unit cell and p(r)

and p0(r) are the Patterson function and its initial value,

respectively. For each known re¯ection h, a constraint

imposed upon the Patterson entropy isP
r

p�r� cos�2�h � r� � Iobs�h�; �2�

where Iobs(h) is the observed intensity of the re¯ection.

It was shown by Prince (1993) that maximizing an entropy

function under constraints is equivalent to ®nding the

unconstrained minimum of its dual function. The dual function

is de®ned by

���� � ÿP
r

p�r� ln�p�r�=p0�r��

�P
h

xh

�P
r

p�r� cos�2�h � r� ÿ Iobs�h�
�
; �3�

where v is a vector of parameters that is related to the

Lagrange multipliers. When �(�) reaches its minimum, the

®rst derivative of �(�) should be zero, so that

@����
@p�r� � ÿ ln p�r� ÿ 1ÿ ln p0�r� �

P
h

xh cos�2�h � r�

� 0 �4�
and

p�r� � p0�r� exp
�P

h

xh cos�2�h � r��: �5�

The problem now is to solve the following non-linear multi-

variable equations in order to ®nd the Lagrange multipliers

�h:

P
p0�r� exp

�P
h0

xh0 cos�2�h0 � r�� cos�2�h � r� � Iobs�h�: �6�

We have adopted a quasi-Newton algorithm (Prince, 1993) to

solve these non-linear equations. The mathematical process is

described as follows.

(i) Calculate the initial values of the Patterson function

p0(r) using I(000) via fast Fourier transform (FFT).

(ii) Calculate intensities of the known re¯ections via inverse

FFT,

Imap�h� �
P

r

p�r� cos�2�h � r�: �7�

(iii) Calculate deviation of the Lagrange multipliers �v
using

�v � �I �H���ÿ1; �8�
where �v and �I are both vectors, the dimension being the

number of known re¯ections. For each re¯ection

�I � Imap�h� ÿ Iobs�h�: �9�
H(�) is the Hessian matrix. A typical element of H(�) is

Hij��� �
P

r

p�r� cos�2�hi � r� cos�2�hj � r�: �10�

Since

cos�2�hi � r� cos�2�hj � r� � 0:5fcos�2��hi � hj� � r�
� cos�2��hi ÿ hj� � r�g;

�11�
(10) reduces to

Hij��� � 0:5�Imap�hi � hj� � Imap�hi ÿ hj��: �12�
As the diagonal elements Hkk(�) are much larger than the off-

diagonal ones, the diagonal approximation (steepest descents)

is appropriate and this is how the computer program is

implemented.

(iv) Compute the new Lagrange multipliers

vn�1 � vn ��v: �13�

(v) Compute new Patterson map using (5).

(vi) Repeat from step (ii) until the process converges, i.e. a

pre-set criterion is met. In the tests described below, this

criterion was the requirement that the fractional change in

intensity from input to output should be <0.03.

A ¯ow chart of a program ME3.3, modi®ed from the ME

version described in Xie & Hao (1997) to implement the

above procedure, is shown in Fig. 1.

3. Tests of the procedure

A test of the method was carried out using Laue data collected

from tetragonal hen egg-white lysozyme (space group P43212;

a = 79.19, c = 38.02 AÊ ). Seven Laue diffraction images

recorded by Professor J. R. Helliwell's group using a MAR

imaging plate on Station 9.5 of the Daresbury Synchrotron
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Radiation Source (SRS) were used. The intensity data were

processed and normalized using the LAUEGEN and

LAUENORM programs of the Daresbury Laue Software Suite

(Campbell et al., 1998; Helliwell et al., 1989). The soft limits

were estimated using the intensity histogram method (Hao et

al., 1995b) to be �min = 0.4, �max = 1.55 and dmin = 2.1 AÊ .

Intensity measurements for 17125 singles in the wavelength

range 0.48±1.30 AÊ yielded 5296 unique re¯ections with

R �P
i

jIi ÿ Imj=
P

i

Im � 0:067; �14�

where Ii represents the wavelength-normalized intensity and

Im is the mean of two or more measurements of the same or

symmetry-equivalent re¯ections. These re¯ections were

compared with high-quality monochromatic data (Young et

al., 1993). The R factor, as de®ned in (14), between the Laue

singles data and the reference monochromatic data was 0.061.

All intensities of the multiple spots were then processed by the

maximum-entropy program ME (Xie & Hao, 1997). As a

result of the deconvolution process, 1442 unique re¯ections

were obtained. The R factor between the deconvoluted

multiples and monochromatic data was 0.116 for the 1257

re¯ections common to the two sets (Xie & Hao, 1997). At 5 AÊ

resolution, the number of single re¯ections was 272, repre-

senting a completeness of 43%; the combined number of

single and deconvoluted multiple re¯ections was 383, repre-

senting 61% completeness.

Intensities of all unobserved re¯ections were then estimated

using the program ME3.3 with the combined data set of single

and deconvoluted multiple re¯ections being used as

constraints. The re¯ections estimated in this way within

resolutions of 4.0, 5.0, 6.0 and 7.0 AÊ were compared with

monochromatic data (Table 1). It can be seen that the R factor

for re¯ections within 7.0 AÊ is the lowest, but the number of

re¯ections available in this range is very small. After taking

into account the numbers of re¯ections estimated in different

ranges of d spacings and their R factors, those with d � 5.0 AÊ

Table 1
Lysozyme: analysis of the re¯ection intensities estimated by the
maximum-entropy method at different resolutions .

The R factor, as de®ned in equation (14), is calculated against monochromatic
data.

d spacing (AÊ ) >4.0 >5.0 >6.0 >7.0

Number of estimated
re¯ections

355 243 174 130

Number of estimated
re¯ections in common
with monochromatic data

229 119 52 17

R factor (on I) 0.444 0.405 0.391 0.346

Table 2
Lysozyme: detailed analysis of the estimated re¯ections as a function of
resolution and intensities.

The R factor, as de®ned in equation (14), is calculated against monochromatic
data. The numbers in the second column are small due to the incompleteness
of the monochromatic data at these d spacings.

Range of d spacings
(AÊ )

Number of re¯ections
in common with
monochromatic data R factor (on I)

>7.22 9 0.333
6.90±7.22 9 0.301
6.50±6.90 8 0.430
6.27±6.50 9 0.422
5.96±6.27 18 0.405
5.64±5.96 16 0.475
5.32±5.64 22 0.352
5.01±5.32 28 0.441
All 119 0.405

Intensity range

Number of re¯ections
in common with
monochromatic data R factor (on I)

>2936 1 0.206
2686±2936 5 0.227
2446±2686 23 0.406
2218±2446 39 0.446
2001±2218 17 0.397
1795±2001 20 0.338
1600±1795 14 0.478
All 119 0.405

Figure 1
Flow chart of the program using the maximum-entropy method for
estimating re¯ection intensities that are not recorded experimentally.



were accepted for inclusion in calculated electron-density

maps. Further R-factor analysis is shown in Table 2.

The inclusion of the estimated re¯ections that were not

observed in the Laue experiment has improved the data

completeness at 5 AÊ resolution from 61 to 100%. To see how

the connectivity of the electron-density map is improved, one

section of the map is superimposed on the re®ned model of

Young et al. (1993) and shown in Fig. 2. The discontinuous

electron densities between C�5 and C�6 of the map calculated

using observed intensities only become continuous when

unobserved but estimated intensities are added to the calcu-

lation. The map correlation coef®cients (CC) were also

calculated between the electron-density maps computed using

Laue data and monochromatic data; for the resolution limits 7,

6 and 5 AÊ , the CCs were 0.243, 0.541 and 0.694, respectively,

without the estimated re¯ections, and were enhanced to 0.585,

0.616 and 0.778, respectively, with these re¯ections.
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Figure 2
A region (residues 5 and 6) of the electron-density map of lysozyme
calculated using (a) observed re¯ections (singles and deconvoluted
multiples) only, (b) observed and estimated unobserved re¯ections. The
contour level is 1�. The connectivity has been improved signi®cantly by
the inclusion of the estimated data.

Table 3
Cytochrome c peroxidase (CCP): detailed analysis of the estimated
re¯ections as a function of resolution and intensities.

The R factor, as de®ned in equation (14), is calculated against monochromatic
data.

Range of d spacings
(AÊ )

Number of re¯ections
in common with
monochromatic data R factor (on I)

>9.25 339 0.448
8.50±9.25 85 0.406
7.75±8.50 133 0.409
7.00±7.75 173 0.410
6.25±7.00 264 0.407
5.50±6.25 429 0.397
4.75±5.50 727 0.376
4.00±4.75 796 0.410
All 2946 0.406

Intensity range

Number of re¯ections
in common with
monochromatic data R factor (on I)

>214 8 0.487
201±214 47 0.391
189±201 99 0.391
177±189 200 0.464
165±177 374 0.410
154±165 675 0.405
143±154 1069 0.387
133±143 474 0.414
All 2946 0.406

Table 4
4Zn insulin: detailed analysis of the estimated re¯ections as a function of
resolution and intensities.

The R factor, as de®ned in equation (14), is calculated against monochromatic
data

Range of d spacings
(AÊ )

Number of re¯ections
in common with
monochromatic data R factor (on I)

>9.13 67 0.509
8.25±9.13 24 0.401
7.38±8.25 31 0.345
6.50±7.38 61 0.374
5.63±6.50 93 0.318
4.75±5.63 164 0.389
3.88±4.75 234 0.346
3.00±3.88 467 0.400
All 1141 0.387

Intensity range

Number of re¯ections
in common with
monochromatic data R factor (on I)

>1434 2 0.243
1320±1434 2 0.187
1211±1320 10 0.193
1107±1211 343 0.401
1007±1107 408 0.391
912±1007 186 0.370
822±912 134 0.361
736±822 56 0.434
All 1141 0.387
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A second test was carried out with Laue data from cyto-

chrome c peroxidase (CCP; Fulop et al., 1994). The crystal is

orthorhombic, space group P212121, with unit-cell parameters

a = 107.4, b = 76.8, c = 51.4 AÊ and Z = 4. The Laue diffraction

patterns recorded on four ®lm packs had been processed with

the Laue evaluation and analysis program LEAP (Fulop et al.,

1994), with �min = 0.25, �max = 2.06 and dmin = 2.2 AÊ . The

overall completeness of 9428 unique single re¯ections

processed from four ®lm packs to 2.2 AÊ resolution was 53%.

The R factor, as de®ned in (14), between the Laue singles data

and the reference monochromatic data was 0.130. Intensities

of all remaining re¯ections to 4.0 AÊ were then estimated using

the program ME3.3 while the single re¯ections were used as

constraints. These estimated re¯ections were then compared

with monochromatic data (Table 3), giving an overall R =

0.406.

The ME procedure was also tested with Laue data from 4Zn

insulin (Hao et al., 1995a). The crystal is trigonal, space group

R3, with unit-cell parameters a = b = 80.7, c = 37.6 AÊ and Z = 9.

The Laue diffraction patterns recorded on two ®lm packs had

been processed with the Daresbury Laue Software Suite

(Helliwell et al., 1989), with �min = 0.30, �max = 2.0 and

dmin = 2.3 AÊ . The overall completeness of 2053 unique single

re¯ections processed from two ®lm packs to 2.3 AÊ resolution

was 49%. The R factor between the Laue singles data and the

reference monochromatic data was 0.134. Intensities of all

remaining re¯ections to 3.0 AÊ were then estimated using the

program ME3.3 with the single re¯ections used as constraints.

These estimated re¯ections were then compared with mono-

chromatic data (Table 4) giving an overall R = 0.387.

4. Concluding remarks

It is well known that high data completeness at low resolution

is essential in calculating electron-density maps; however, in

Laue experiments a high proportion of low-resolution re¯ec-

tion data are often not recorded. We have demonstrated that

the maximum-entropy method can be used to estimate these

re¯ection intensities. The starting map is calculated using only

the I(000) term to ensure minimum bias, and all the observed

data are used as constraints in the entropy-maximization

process. The test results have shown that useful data can be

obtained from the computer program ME3.3 which is based on

this method. The inclusion of these estimated data increases

the data completeness and therefore improves the connec-

tivity of the electron-density map. It is worth noting that this

method is not restricted to use with Laue data, as it could

equally well be applied to data collected with monochromatic

radiation.
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